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Abstract

An analytic 3-D p-version arbitrary quadrilateral plate element is applied to solve the free vibration of laminated plates.

The computational accuracy is considerably improved due to the additional hierarchical shape functions and analytic

integration. The study on a single layer orthotropic plate with simply supported boundary conditions shows the fast

convergence and great accuracy of the present element. Then the analyses of rectangular plates with simply supported,

cantilevered and fully clamped boundary conditions are carried out. Because of the great fitness to all kinds of geometry

shapes, the present element is easily applied to various polygonal plates.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Two plate theories are most widely used for laminated plates. One is the classical plate theory (CPT) based
on Kirchhoff’s assumptions, which restricts the model to thin plates; the other is the first-order shear
deformation theory (FSDT) based on Reissner-Mindlin’s moderately thick plate theory, which introduces the
through-thickness shear and inertia effects and leads to considerable accurate results for both thin and
moderately thick laminated plates [1]. Some high-order plate theories such as the three-order shear
deformation theory, with the elimination of the shear correct factor, have also received much interest [2–5].

To obtain more accurate solutions, completely 3-D analyses are superior. Through analytical and semi-
analytical methods, bending, vibration and buckling problems were introduced [6,7]. They are restricted to plates
with rectangular shapes only and could not be easily extended to the application of finite elements. A trapezoidal
p-element is first put forward by Leung et al. [8] for the free vibrating plane problems. With the exact analytical
integration, the accuracy of natural frequencies is greatly improved. Then this kind of p-element is applied to the
vibration of membranes, thick plates and laminated plates and with excellent results [9–11].

Part 1 has considered the free vibration of isotropic plates; in this part, laminated plates will be of interest. The
vibration analyses of rectangular, triangular and polygonal laminated plates with different laminate sequences,
boundary conditions are carried out to show the performance of the proposed quadrilateral plate element.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

E11, E22, E33 Young’s modulus
G12, G23, G13 shear modulus
n12, n23, n13 Poisson’s ratio
b fibre angle
h, t thickness of the laminate
r mass per unit volume
D0 flexural rigidity ð¼ E22h3=12ð1� n12n21ÞÞ
o natural frequency

l non-dimensional frequency parameters
si, ei stress and strain components
Qij reduced stiffness in the material axes of

the layer
Q̄ij reduced stiffness in the global coordinate
px, py, pz number of additional hierarchical terms

in three co-ordinates
J Jacobian matrix
u vector of u, v and w

Ke stiffness matrix

B. Zhu et al. / Journal of Sound and Vibration 298 (2006) 385–392386
2. Formulation

2.1. Laminated plate theory

A symmetrically laminated plate with the co-ordinate system at the mid-plane of the laminate is shown in
Fig. 1. Each layer of the laminate is of equal thickness for convenience. The fibre direction is indicated by an
angle b, which is the positive rotation angle of the principal material axes from the arbitrary xy-axes. The
modulus of elasticity for a layer parallel to fibres is E11, perpendicular to fibres is E22 and perpendicular to xy-
plane is E33. Without loss of generality, in this paper, the x-axes are taken parallel to one side of the geometry
of the plates.

For the 3-D analyses of the laminated plates, the stiffness matrix relates to the fibre direction. The
constitutive equations in the local coordinate for the kth layer can be expressed as

s1
s2
s3
s6
s4
s5

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

Q11 Q12 Q13 0 0 0

Q22 Q23 0 0 0

Q33 0 0 0

Q66 0 0

sym Q44 0

Q55

2
6666666664

3
7777777775

�1
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�3

�6

�4

�5

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

, (1)

where si, ei and Qij are the stress, strain and reduced stiffness coefficients in the material axes of the layer. To
transform the above equations from the local coordinate system to the global coordinate, the laminate
layer 1 
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layer n

a
b
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y
h/2
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Fig. 1. The configuration of the laminated composite plate.



ARTICLE IN PRESS
B. Zhu et al. / Journal of Sound and Vibration 298 (2006) 385–392 387
constitutive equation can be expressed as

sxx

syy

szz

sxy

syz

szx
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9>>>>>>>>>=
>>>>>>>>>;

ðkÞ

¼

Q̄11 Q̄12 Q̄13 Q̄16 0 0

Q̄22 Q̄23 Q̄26 0 0

Q̄33 Q̄36 0 0

Q̄66 0 0

sym Q̄44 Q̄45

Q̄55

2
6666666664

3
7777777775

ðkÞ
�xx
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�yz
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8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

, (2)

where Q̄ ¼ T�1QT�T, here

T ¼

cos2 b sin2 b 0 2 cos b sin b 0 0

sin2 b cos2 b 0 �2 cos b sin b 0 0

0 0 1 0 0 0

� cos b sin b cos b sin b 0 cos2 b� sin2 b 0 0

0 0 0 0 cos b � sin b

0 0 0 0 sin b cos b

2
6666666664

3
7777777775
. (3)

2.2. Element formulation

The co-ordinate system used to define a 3-D quadrilateral uniform plate element is the same as that
mentioned in Part 1. The only difference is the formulation of the stiffness matrix. For the kth layer, let zk,
zk+1 denote values of the z-coordinate at the bottom and the top, respectively. Then the element stiffness
matrix is given by

Ke ¼

Z
V

BTQ̄BdV ¼
Xn

k¼1

Z zkþ1

zk

Z 1

�1

Z 1

�1

BTQ̄
k
B � Jj jdxdZdz, (4)

where zk ¼
2
h
ðzk � z1Þ � 1, zkþ1 ¼

2
h
ðzkþ1 � z1Þ � 1 and n is the total number of layers.
3. Numerical results and discussion

In this section, thin, moderately thick and thick laminate plates are considered with different stacking
sequences, geometry parameters and boundary conditions. To simplify the computation and presentation, the
same numbers of the additional hierarchical terms in the three dimensions are taken, that is, px ¼ py ¼ pz ¼

p. Unless stated otherwise, the number of hierarchical terms p is set to be 3, and the orientation of x-axes is
parallel to any side of the polygons.

3.1. Vibration of a single layer orthotropic plate

A simply supported square plate is used to perform the convergence study and demonstrate the accuracy of
the present p-element. The plate is made of aragonite, the material constant of which is given as

Q ¼

160 37:3 1:72 0 0 0

86:87 15:72 0 0 0

84:81 0 0 0

42:06 0 0

sym 25:58 0

42:68

2
666666664

3
777777775
.
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The simply supported boundary condition here is defined as follows:

x ¼ 0; a : u ¼ w ¼ 0,

y ¼ 0; b : v ¼ w ¼ 0.

The first five non-dimensional frequencies ðl ¼ oh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r=Q11

p
Þ of the plate are computed. As shown in Fig. 2,

three meshing schemes are used: one rectangular element (mesh I), two quadrilateral elements (mesh II) and
four quadrilateral (mesh III) elements. With the increasing number of hierarchical terms p, the results are
shown in Table 1 along with the available 3-D finite element solutions [12]. The fast convergence is observed
with the increasing numbers of hierarchical terms and elements. Furthermore, the results are in excellent
agreement with the existing FEM solutions.
3.2. Vibration of laminated square plates

Firstly, for different materials, E/E and G/E with material properties are shown in Table 2, the first six
fundamental frequency parameters l ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D0

p
ðD0 ¼ E11h3=12ð1� n12n21ÞÞ are presented in Table 3 for

single- and five-layer angle-ply cantilever plates. Figs. 3 and 4 gives the coordinate systems of the cantilever
plate. The material properties are taken from Ref. [13]. It should be noted that the 3-D elasticity analysis needs
the complete set of mechanical properties, the transverse Poisson ratio np

23 is obtained from Ref. [14]. With
h=a ¼ 0:05, the results are compared with the CPT solutions of Narita et al. [15]. The frequencies for cross-ply
E=E and G=E laminated plates are presented in Table 4. The lamination sequences are 01, 01/901/01 and
a

a

0.6a 0.4a 0.6a 0.4a

0.6a

0.4at

0.4a 0.6a 0.6a0.4a

(a) (b) (c)

Fig. 2. Meshes of square plates: (a) mesh I; (b) mesh II; and (c) mesh III.

Table 1

Non-dimensional frequencies ðl ¼ oh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r=Q11

p
Þ of a simply supported orthotropic square plate ða=h ¼ 2Þ

Method Mode sequence

1 2 3 4 5

3-D FEM solution [12] 0.7295 0.8054 0.8054 1.0823 1.2144

Mesh I p ¼ 1 0.7874 0.8107 0.8107 1.2317 1.6049

p ¼ 2 0.7383 0.8107 0.8107 1.0865 1.2830

p ¼ 3 0.7294 0.8054 0.8054 1.0827 1.2515

p ¼ 4 0.7293 0.8054 0.8054 1.0823 1.2175

Mesh II p ¼ 1 0.7853 0.8086 0.8107 1.1522 1.3314

p ¼ 2 0.7363 0.8055 0.8106 1.0857 1.2314

p ¼ 3 0.7295 0.8054 0.8054 1.0826 1.2148

p ¼ 4 0.7293 0.8054 0.8054 1.0823 1.2136

Mesh III p ¼ 1 0.7693 0.8084 0.8084 1.0903 1.3106

p ¼ 2 0.7302 0.8054 0.8054 1.0826 1.2265

p ¼ 3 0.7294 0.8054 0.8054 1.0823 1.2145

p ¼ 4 0.7293 0.8054 0.8054 1.0823 1.2136
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01/901/01/901/01, respectively. It is obvious that when the plate is very thin, the difference of the solution
between 3-D theory and CPT is little. The results in Tables 3 and 4 also prove it.

To test the performance of the present element in solving problems with fully clamped boundary conditions,
a square laminated plate with different lamination and thickness ratios are taken into accounted. Ye [16] gave
the first frequency parameters for this problem. Comparison with the results of ANSYS and Ye [16] is carried
out in Table 5. It can be seen that good agreement are achieved for various lamination.

3.3. Vibration of triangular plates

The advantage of the finite element method over the analytical and semi-analytical methods is that the
former can be easily applied to various geometries and boundary conditions, while it is rather difficult for the
Table 2

Material properties for E=E and G=E

Material E11 E22 ( ¼ E33) G12 ( ¼ G13) G23 n12 ( ¼ n13) np
23

E/E 60.7 24.8 11.99 8.48 0.23 0.462

G/E 138 8.96 7.1 2.68 0.30 0.675

Table 3

Fundamental frequency parameters ðl ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D0

p
Þ for angle-ply square cantilever plates

Mode 1 2 3 4 5 6

(E/E) single-layer (301)

Ref. [15] 2.954 7.164 18.14 20.01 26.45 41.67

Present 2.957 7.045 17.83 19.63 25.69 36.24

(E/E) five-layer (301/�301/301/�301/301)

Ref. [15] 3.019 7.398 18.32 20.65 26.95 44.04

Present 3.022 7.283 18.00 20.25 26.17 38.61

(G/E) single-layer (301)

Ref. [15] 2.095 4.605 9.999 13.56 18.53 20.96

Present 2.073 4.468 9.625 12.72 17.54 19.79

(G/E) five-layer (301/�301/301/�301/301)

Ref. [15] 2.545 5.952 12.63 16.42 21.55 26.72

Present 2.506 5.674 11.77 15.42 19.70 24.73

a

a

x

E22
E11

 θ

Fig. 3. Cantilever plate with co-ordinate system.
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Table 4

Fundamental frequency parameters ðl ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D0

p
Þ of cross-ply laminated cantilever plates

Lamination Mode

1 2 3 4 5 6

E/E 01 Ref. [15] 3.507 6.897 18.41 22.07 27.37 42.14

Present 3.512 6.801 18.07 21.68 26.64 37.28

01/901/01 Ref. [15] 3.468 6.874 18.67 21.84 27.19 42.15

Present 3.473 6.771 18.33 21.40 26.40 35.93

01/901/01/901/01 Ref. [15] 3.284 6.764 19.65 20.94 26.32 42.17

Present 3.293 6.667 19.34 20.59 25.62 35.59

G/E 01 Ref. [15] 3.514 4.740 9.116 18.35 22.02 23.61

Present 3.480 4.627 8.827 17.67 20.46 21.85

01/901/01 Ref. [15] 3.453 4.707 10.01 21.57 21.64 23.33

Present 3.401 4.563 9.680 19.46 20.54 21.25

01/901/01/901/01 Ref. [15] 3.155 4.505 13.33 19.77 21.55 28.80

Present 3.122 4.383 12.96 18.26 19.81 21.52

Fig. 4. Meshes of regular polygonal plates.
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latter. In this section, for the thickness ratios h=a ¼ 0:2 and 0.5 with a is the length of the side, equilateral
triangular plates with different lamination are analysed and the first five non-dimensional frequency
parameters l ¼ ob2=p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D0

p
are shown in Table 6.
3.4. Vibration of polygonal plates.

With five and six present elements as shown in Fig. 3, respectively, the pentagonal and hexagonal plates with
fully clamped boundary conditions are analysed. The orientation of x-axes is parallel to any side of the
polygons. The circum-radius of the polygons is R. The first five non-dimensional frequency parameters
ðl ¼ ð4oR2=p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D0

p
Þ are calculated and shown in Table 7, with different thickness ratios h/R. Other

boundary conditions can also be easily dealt with.
4. Conclusions

Following the development and application of an analytic 3-D p-version arbitrary quadrilateral plate
element for the free vibration of isotropic plates in Part 1, the element is extended to the vibration analyses of
laminated plates in this part. With the additional hierarchical shape functions and analytically integrated
element matrices, the computation accuracy is considerably improved. The convergence rate of the element is
very fast, which can be observed in the first example. The element is applied for the free vibration of laminated
triangular, rectangular and polygonal plates with various boundary conditions.
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Table 5

Fundamental frequency parameters ðl ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r=E22

p
Þ of a fully clamped square plate with various thickness ratios and laminate sequences

h/a Lamination Method Mode sequence

1 2 3 4 5

0.05 01 Ref. [16] 0.990

ANSYS 1.019 1.368 2.042 2.404 2.649

Present 1.021 1.369 2.080 2.409 2.654

01/901 Ref. [16] 0.772

ANSYS 0.780 1.555 1.555 2.156 2.727

Present 0.782 1.556 1.556 2.160 2.771

01/901/01 Ref. [16] 0.991

ANSYS 1.020 1.440 2.231 2.365 2.650

Present 0.927 1.488 2.098 2.480 2.499

[01/901]2 Ref. [16] 0.932

ANSYS 0.989 1.941 1.941 2.635 3.356

Present 0.982 1.916 1.916 2.602 3.339

0.1 01 Ref. [16] 1.570

ANSYS 1.680 2.328 3.481 3.483 3.935

Present 1.684 2.318 3.491 3.502 3.933

01/901 Ref. [16] 1.327

ANSYS 1.418 2.653 2.653 3.583 4.339

Present 1.416 2.639 2.639 3.562 4.348

01/901/01 Ref. [16] 1.568

ANSYS 1.683 2.452 3.418 3.765 3.948

Present 1.612 2.547 3.259 3.893 4.045

[01/901]2 Ref. [16] 1.504

ANSYS 1.717 3.101 3.101 4.106 4.940

Present 1.680 3.008 3.008 3.982 4.803

E11/E22 ¼ 10, E33 ¼ E22, G12 ¼ G13 ¼ 0.6E22, G23 ¼ 0.5E22, n12 ¼ n13 ¼ n23 ¼ 0.25.

Table 6

First five non-dimensional frequency parameters ðl ¼ ob2=p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D0

p
Þ of a fully clamped equilateral triangular plate for different

lamination and thickness ratios

h/a Mode sequence

1 2 3 4 5

01/901/01 0.2 8.07 11.89 13.03 16.14 17.37

0.5 3.57 5.23 5.60 6.31 6.62

01/901/01/901 0.2 8.21 12.25 13.04 16.54 17.58

0.5 3.57 5.32 5.57 6.44 6.64

01/901/01 0.2 7.97 12.22 12.26 16.57 16.92

0.5 3.57 5.19 5.20 5.77 5.79

01/901/01/901 0.2 8.20 12.61 12.65 16.94 17.49

0.5 3.57 5.42 5.43 6.64 7.20

E11/E22 ¼ 40, E33 ¼ E22, G12 ¼ G13 ¼ 0.6E22, G23 ¼ 0.5E22, n12 ¼ n13 ¼ 0.25, np
23 ¼ 0:646.
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Table 7

First five non-dimensional frequency parameters ðl ¼ ð4oR2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D0

p
Þ of three-ply polygonal (01/901/01) laminate plate

h/a Mode sequence

1 2 3 4 5

Pentagon 0.1 2.41 3.42 4.84 4.96 5.93

0.2 1.60 2.37 2.94 3.39 3.68

0.5 0.80 1.19 1.36 1.68 1.73

Hexagon 0.1 2.27 3.46 4.45 4.90 5.65

0.2 1.42 2.35 2.75 3.27 3.53

0.5 0.77 1.18 1.28 1.60 1.67

E11/E22 ¼ 40, E33 ¼ E22, G12 ¼ G13 ¼ 0.6E22, G23 ¼ 0.5E22, n12 ¼ n13 ¼ 0.25, np
23 ¼ 0:646, D0 ¼ E22h3=12ð1� n12n21Þ.

B. Zhu et al. / Journal of Sound and Vibration 298 (2006) 385–392392
Acknowledgement

The research is supported by the Hong Kong Research Grant Council No. CityU 1012/04E.
References

[1] J.N. Reddy, Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, Boca Raton FL, 1996.

[2] J.N. Reddy, A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics 45 (1984) 745–752.

[3] J.N. Reddy, C.F. Liu, A higher-order shear deformation theory of laminated elastic shells, International Journal of Engineering

Science 23 (1985) 319–330.

[4] A.Y.T. Leung, J. Niu, C.W. Lim, K. Song, A new unconstrained third-order plate theory for Navier solutions of symmetrically

laminated plates, Computers and Structures 81 (2003) 2539–2548.

[5] C.W. Lim, K.M. Liew, A higher-order theory for vibration of shear deformable cylindrical shallow shells, International Journal of

Mechanical Sciences 37 (1995) 277–295.

[6] S. Srinivas, C.V. Joga Rao, A.K. Rao, An exact analysis for vibration of simply supported homogeneous and laminated thick

rectangular plates, Journal of Sound and Vibration 12 (1970) 187–199.

[7] S. Srinivas, A.K. Rao, Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates,

International Journal of Solids and Structures 6 (1970) 1463–1481.

[8] A.Y.T. Leung, B. Zhu, J. Zheng, H. Yang, Analytical trapezoidal Fourier p-element for vibration plane problems, Journal of Sound

and Vibration 271 (2004) 67–81.

[9] A.Y.T. Leung, B. Zhu, J. Zheng, H. Yang, A trapezoidal Fourier p-element for membrane vibrations, Thin-walled Structures 41

(2003) 479–491.

[10] A.Y.T. Leung, B. Zhu, Transverse vibration of thick polygonal plates using analytical integrated trapezoidal Fourier p-element,

Computers and Structures 82 (2004) 109–119.

[11] A.Y.T. Leung, C. Xiao, B. Zhu, S. Yuan, Free vibration of laminated composite plates subjected to in-plane stresses using trapezoidal

p-element, Composite Structures 68 (2005) 167–175.

[12] R.C. Batra, L.F. Qian, L.M. Chen, Natural frequencies of thick square plates made of orthotropic, trigonal, monoclinic, hexagonal

and triclinic materials, Journal of Sound and Vibration 270 (2004) 1074–1086.

[13] C.C. Chao, Comparison of natural frequencies of laminates by 3-D theory, part I: rectangular plates, Journal of Sound and Vibration

230 (2000) 985–1007.

[14] T.P. Philippidis, The transverse poisson’s ratio in fiber reinforced laminae by means of a hybrid experimental approach, Journal of

Composite Materials 28 (1994) 252–261.

[15] Y. Narita, A.W. Leissa, Frequencies and mode shapes of cantilevered laminated composite plates, Journal of Sound and Vibration 154

(1992) 161–172.

[16] J.Q. Ye, A three-dimensional free vibration of cross-ply laminated rectangular plates with clamped edges, Computer Methods in

Applied Mechanics and Engineering 140 (1997) 383–392.


	Analytic 3-D p-element for vibration analyses of plates, �Part 2: Laminated plates
	Introduction
	Formulation
	Laminated plate theory
	Element formulation

	Numerical results and discussion
	Vibration of a single layer orthotropic plate
	Vibration of laminated square plates
	Vibration of triangular plates
	Vibration of polygonal plates.

	Conclusions
	Acknowledgement
	References


